A Data-driven Approach to Harvesting Latent Reduced Models to Precondition Lossy Compression for Scientific Data

Huizhang Luo, Junqi Wang, Zhenlu Qin, Dan Huang, Qing Liu, Mengchu Zhou, Hong Jiang

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we propose and evaluate the idea that data need to be preconditioned prior to compression, such that they can better match the design philosophies of lossy compressors for HPC scientific data. In particular, we aim to identify a reduced model that can be utilized to transform the original data into a more compressible form. We begin with two PDE applications as a proof of concept, in which we demonstrate that a reduced model can indeed reside in the full model output, and can be utilized to improve compression ratios. A mathematical proof is also presented to show how the compression ratio is improved by the reduced model. We further explore more general dimension reduction techniques to extract the reduced model, including principal component analysis, singular value decomposition, and discrete wavelet transform. After preconditioning, the reduced model in conjunction with difference between the reduced model and full model is stored, which results in higher compression ratios. We evaluate the reduced models on ten scientific datasets, and the results show the effectiveness of our approaches. Given that there is no single method that consistently achieves the best performance, we further propose a selection strategy that guides users to select the best reduced model prior to data reduction.

Original languageEnglish (US)
Pages (from-to)949-963
Number of pages15
JournalIEEE Transactions on Big Data
Volume9
Issue number3
DOIs
StatePublished - Jun 1 2023

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Information Systems and Management

Keywords

  • Data reduction
  • compressor selection
  • data preconditioning
  • high-performance computing

Fingerprint

Dive into the research topics of 'A Data-driven Approach to Harvesting Latent Reduced Models to Precondition Lossy Compression for Scientific Data'. Together they form a unique fingerprint.

Cite this