A dynamic algorithm for updating katz centrality in graphs

Eisha Nathan, David A. Bader

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

Many large datasets from a variety of fields of research can be represented as graphs. A common query is to identify the most important, or highly ranked, vertices in a graph. Centrality metrics are used to obtain numerical scores for each vertex in the graph. The scores can then be translated to rankings identifying relative importance of vertices. In this work we focus on Katz Centrality, a linear algebra based metric. In many real applications, since data is constantly being produced and changed, it is necessary to have a dynamic algorithm to update centrality scores with minimal computation when the graph changes. We present an algorithm for updating Katz Centrality scores in a dynamic graph that incrementally updates the centrality scores as the underlying graph changes. Our proposed method exploits properties of iterative solvers to obtain updated Katz scores in dynamic graphs. Our dynamic algorithm improves performance and achieves speedups of over two orders of magnitude compared to a standard static algorithm while maintaining high quality of results.

Original languageEnglish (US)
Title of host publicationProceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017
EditorsJana Diesner, Elena Ferrari, Guandong Xu
PublisherAssociation for Computing Machinery, Inc
Pages149-154
Number of pages6
ISBN (Electronic)9781450349932
DOIs
StatePublished - Jul 31 2017
Externally publishedYes
Event9th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017 - Sydney, Australia
Duration: Jul 31 2017Aug 3 2017

Publication series

NameProceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017

Conference

Conference9th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017
Country/TerritoryAustralia
CitySydney
Period7/31/178/3/17

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems

Fingerprint

Dive into the research topics of 'A dynamic algorithm for updating katz centrality in graphs'. Together they form a unique fingerprint.

Cite this