TY - GEN
T1 - A fast estimation model for angular spectrum based focused ultrasound wave simulation in layered tissue media
AU - Arif, Tariq M.
AU - Ji, Zhiming
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - High-Intensity Focused Ultrasound (HIFU) is a popular non-invasive therapeutic tool and widely used in many clinical settings. The simulation models used for HIFU responses are computationally expensive and time-consuming. Among many numerical HIFU simulation methods, the Rayleigh-Sommerfeld approach is considered to be a reliable one. However, Rayleigh-Sommerfeld is suitable for homogeneous medium, and for a heterogeneous media, many approximations should be made in order to reduce the calculation time. In this study, we propose a fast methodology for estimating focused ultrasound pressure-temperature field responses through layered tissue media. A computationally efficient nonlinear angular spectrum-based method that can address the effects of varying attenuations, reflections and refractions from tissue layers is implemented to calculate reference datasets. From the simulation datasets, a profile function coupled with a GUI code is constructed for estimating the pressure-temperature response by using a Gaussian function and a Genetic Algorithm. The HIFU response model illustrated in this study can be advantageous and time-effective when multiple simulations are required on a similar complex patient model, and it can be used to guide and reduce the sets of simulations required for planning HIFU treatment.
AB - High-Intensity Focused Ultrasound (HIFU) is a popular non-invasive therapeutic tool and widely used in many clinical settings. The simulation models used for HIFU responses are computationally expensive and time-consuming. Among many numerical HIFU simulation methods, the Rayleigh-Sommerfeld approach is considered to be a reliable one. However, Rayleigh-Sommerfeld is suitable for homogeneous medium, and for a heterogeneous media, many approximations should be made in order to reduce the calculation time. In this study, we propose a fast methodology for estimating focused ultrasound pressure-temperature field responses through layered tissue media. A computationally efficient nonlinear angular spectrum-based method that can address the effects of varying attenuations, reflections and refractions from tissue layers is implemented to calculate reference datasets. From the simulation datasets, a profile function coupled with a GUI code is constructed for estimating the pressure-temperature response by using a Gaussian function and a Genetic Algorithm. The HIFU response model illustrated in this study can be advantageous and time-effective when multiple simulations are required on a similar complex patient model, and it can be used to guide and reduce the sets of simulations required for planning HIFU treatment.
KW - Angular spectrum method
KW - GUI
KW - Gaussian function
KW - Genetic Algorithm
KW - HIFU
KW - Rayleigh-Sommerfeld
UR - http://www.scopus.com/inward/record.url?scp=85078833973&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078833973&partnerID=8YFLogxK
U2 - 10.1115/IMECE2019-11088
DO - 10.1115/IMECE2019-11088
M3 - Conference contribution
AN - SCOPUS:85078833973
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Biomedical and Biotechnology Engineering
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2019 International Mechanical Engineering Congress and Exposition, IMECE 2019
Y2 - 11 November 2019 through 14 November 2019
ER -