A novel siphon-based deadlock control method for FMS

Zhi Wu Li, Meng Chu Zhou

Research output: Contribution to journalConference articlepeer-review

Abstract

An important Petri net-based method to prevent deadlocks arising in flexible manufacturing systems (FMS) is to add control places and related arcs to strict minimal siphons (SMS) such that no siphon can be emptied. Its disadvantage lies in that the method often adds too many additional places to the net. This paper explores ways to minimize the new additions of places while achieving the same control purpose. It proposes the concept of elementary siphons that are a special class of SMS and proves that by adding a control place for each elementary siphon to make sure that it is always marked, deadlock can be successfully prevented. Compared with the existing methods, the new method requires a much smaller number of control places and, therefore, is suitable for large-scale Petri nets. An FMS example is used to illustrate the proposed concepts and policy.

Original languageEnglish (US)
Pages (from-to)1452-1457
Number of pages6
JournalProceedings - IEEE International Conference on Robotics and Automation
Volume1
StatePublished - 2003
Event2003 IEEE International Conference on Robotics and Automation - Taipei, Taiwan, Province of China
Duration: Sep 14 2003Sep 19 2003

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence
  • Electrical and Electronic Engineering
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'A novel siphon-based deadlock control method for FMS'. Together they form a unique fingerprint.

Cite this