Abstract
The coffee berry borer (CBB, Hypothenemus hampei) is the most serious insect pest of coffee worldwide; understanding the dynamics of its reproduction is essential for pest management. The female CBB penetrates the coffee berry, eats the seed, and reproduces inside it. A mathematical model of the infestation progress of the coffee berry by the CBB during several coffee seasons is formulated. The model represents the interaction among five populations: uninfested, slightly infested, and severely infested coffee berries, and free and encapsulated CBBs. Coffee harvesting is also included in the model. A one-dimensional map is derived for tracking the population dynamics subject to certain coffee harvesting percentages over several seasons. Stability analysis of the map's fixed points shows that CBB infestation could be eliminated or controlled to a specific level over multiple seasons of coffee harvesting. However, the percent of coffee harvesting required is determined by the level of CBB infestation at the beginning of the first season and in some cases it is impossible to achieve that percentage.
Original language | English (US) |
---|---|
Article number | 108530 |
Journal | Mathematical Biosciences |
Volume | 333 |
DOIs | |
State | Published - Mar 2021 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Modeling and Simulation
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences
- Applied Mathematics
Keywords
- Biological control
- Hypothenemus hampei
- Mathematical modeling
- One-dimensional map
- Pest management