A parameterized liveness and ratio-enforcing supervisor for a class of generalized Petri nets

Ding Liu, Zhiwu Li, Mengchu Zhou

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The work proposes a synthesis method of supervisors for flexible manufacturing systems modeled by a class of generalized Petri nets. A concept of resource usage ratios (RU-ratios) is first presented to describe the occupation degree of a resource by an operation. Next, an intrinsically live structure characterized by a special numerical relationship between arc-weights and initial markings is investigated from a perspective of RU-ratios. Then, a new kind of supervisors is synthesized on the ground of the generic nature of the intrinsically live structure. Such a supervisor can achieve the purposes of both liveness-enforcement and resource usage ratio-enforcement of the system under consideration. Given a plant, it is easy to determine the topological structure of such a supervisor and the number of monitors is bounded by that of resources used in the plant. In addition, when the configuration of the plant model changes, the supervisor can be reusable through adjusting control parameters only without rearrangement of connections. This makes it easy enough and intuitive to be used by industrial practitioners. Instead of maximal behavioral permissiveness, it pursues a precise usage of shared resources that are limited and valuable. Several examples are used to illustrate the proposed methods.

Original languageEnglish (US)
Pages (from-to)3167-3179
Number of pages13
JournalAutomatica
Volume49
Issue number11
DOIs
StatePublished - Nov 2013

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Keywords

  • Flexible manufacturing system
  • Liveness-enforcing supervisor
  • Monitor
  • Petri net
  • Ratio-enforcing supervisor

Fingerprint

Dive into the research topics of 'A parameterized liveness and ratio-enforcing supervisor for a class of generalized Petri nets'. Together they form a unique fingerprint.

Cite this