A PDMS-based optical waveguide for transcutaneous powering of microelectrode arrays

Ali Ersen, Mesut Sahin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Implantable microelectrode arrays (MEAs) usually have on-site electronics that need to be powered, both in neural recording and stimulation applications. Interconnecting wires between implanted electrodes and the outside world constitute a major source of complications. Our solution to this tethering problem is to design a light waveguide that can collect the optical power transcutaneously and transmit it to the microelectrode array where it is to be converted to an electric current. A polydimethylsiloxane (PDMS)-based waveguide was fabricated and its attenuation was measured in vitro and found to be 0.36 dB/cm. The skin flap of the thenar web space in the hand was used to test the photon collection efficiency of the waveguide in diffuse light. The efficiency of the waveguide alone was 44±11% (mean±std), excluding the attenuation within the thenar skin, as measured in 13 subjects with different skin pigmentations. These preliminary results suggest that a PDMS waveguide may collect and deliver optical power with sufficient efficiencies to deep structures inside the body. Optical powering scheme can solve the tethering and breakage problems associated with metal wire connections.

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4475-4478
Number of pages4
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
CountryUnited States
CityOrlando
Period8/16/168/20/16

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'A PDMS-based optical waveguide for transcutaneous powering of microelectrode arrays'. Together they form a unique fingerprint.

Cite this