Abstract
Precise representation to undirected weighted network (UWN) is the foundation of understanding connection patterns inside a massive node set. It can be addressed via a Symmetric Non-negative Latent Factor (SNLF) model with a non-convex learning objective. However, existing SNLF models commonly adopt a first-order learning algorithm that cannot well handle such a non-convex objective, thereby leading to inaccurate UWN representation. Aiming at addressing this issue, this study incorporates an efficient second-order learning algorithm into an SNLF model, thereby establishing a Second-order Symmetric Non-negative Latent Factor (S2NLF) model with two-fold ideas: a) applying the single latent factor-related mapping function to the non-negativity constrained optimization parameters to achieve an unconstrained learning objective, and b) optimizing this learning objective with its optimization parameters through an efficient second-order learning algorithm to achieve accurate representation to the target UWN with affordable computational burden. Empirical studies indicate that owing to its efficient incorporation of the second-order optimization technique, the proposed S2NLF model outperforms state-of-the-art SNLF models when they are used to gain highly accurate representation to UWNs emerging from real applications.
Original language | English (US) |
---|---|
Pages (from-to) | 606-618 |
Number of pages | 13 |
Journal | IEEE Transactions on Network Science and Engineering |
Volume | 10 |
Issue number | 2 |
DOIs | |
State | Published - Mar 1 2023 |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Computer Networks and Communications
- Computer Science Applications
Keywords
- Conjugate gradient descent
- hessian-vector product
- latent factor analysis
- representation learning
- second-order optimization
- symmetric
- undirected weighted network