A statistical framework for streaming graph analysis

James Fairbanks, David Ediger, Rob McColl, David A. Bader, Eric Gilbert

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

In this paper we propose a new methodology for gaining insight into the temporal aspects of social networks. In order to develop higher-level, large-scale data analysis methods for classification, prediction, and anomaly detection, a solid foundation of analytical techniques is required. We present a novel approach to the analysis of these networks that leverages time series and statistical techniques to quantitatively describe the temporal nature of a social network. We report on the application of our approach toward a real data set and successfully visualize high-level changes to the network as well as discover outlying vertices. The real-time prediction of new connections given the previous connections in a graph is a notoriously difficult task. The proposed technique avoids this difficulty by modeling statistics computed from the graph over time. Vertex statistics summarize topological information as real numbers, which allows us to leverage the existing fields of computational statistics and machine learning. This creates a modular approach to analysis in which methods can be developed that are agnostic to the metrics and algorithms used to process the graph. We demonstrate these techniques using a collection of Twitter posts related to Hurricane Sandy. We study the temporal nature of betweenness centrality and clustering coefficients while producing multiple visualizations of a social network dataset with 1.2 million edges. We successfully detect vertices whose triangle-forming behavior is anomalous.

Original languageEnglish (US)
Title of host publicationProceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
PublisherAssociation for Computing Machinery
Pages341-347
Number of pages7
ISBN (Print)9781450322409
DOIs
StatePublished - 2013
Externally publishedYes
Event2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013 - Niagara Falls, ON, Canada
Duration: Aug 25 2013Aug 28 2013

Publication series

NameProceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013

Conference

Conference2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
Country/TerritoryCanada
CityNiagara Falls, ON
Period8/25/138/28/13

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems

Fingerprint

Dive into the research topics of 'A statistical framework for streaming graph analysis'. Together they form a unique fingerprint.

Cite this