TY - GEN
T1 - A unified model for the two-stage offline-then-online resource allocation
AU - Xu, Yifan
AU - Xu, Pan
AU - Pan, Jianping
AU - Tao, Jun
N1 - Publisher Copyright:
© 2020 Inst. Sci. inf., Univ. Defence in Belgrade. All rights reserved.
PY - 2020
Y1 - 2020
N2 - With the popularity of the Internet, traditional offline resource allocation has evolved into a new form, called online resource allocation. It features the online arrivals of agents in the system and the real-time decision-making requirement upon the arrival of each online agent. Both offline and online resource allocation have wide applications in various real-world matching markets ranging from ridesharing to crowdsourcing. There are some emerging applications such as rebalancing in bike sharing and trip-vehicle dispatching in ridesharing, which involve a two-stage resource allocation process. The process consists of an offline phase and another sequential online phase, and both phases compete for the same set of resources. In this paper, we propose a unified model which incorporates both offline and online resource allocation into a single framework. Our model assumes non-uniform and known arrival distributions for online agents in the second online phase, which can be learned from historical data. We propose a parameterized linear programming (LP)-based algorithm, which is shown to be at most a constant factor of 1/4 from the optimal. Experimental results on the real dataset show that our LP-based approaches outperform the LP-agnostic heuristics in terms of robustness and effectiveness.
AB - With the popularity of the Internet, traditional offline resource allocation has evolved into a new form, called online resource allocation. It features the online arrivals of agents in the system and the real-time decision-making requirement upon the arrival of each online agent. Both offline and online resource allocation have wide applications in various real-world matching markets ranging from ridesharing to crowdsourcing. There are some emerging applications such as rebalancing in bike sharing and trip-vehicle dispatching in ridesharing, which involve a two-stage resource allocation process. The process consists of an offline phase and another sequential online phase, and both phases compete for the same set of resources. In this paper, we propose a unified model which incorporates both offline and online resource allocation into a single framework. Our model assumes non-uniform and known arrival distributions for online agents in the second online phase, which can be learned from historical data. We propose a parameterized linear programming (LP)-based algorithm, which is shown to be at most a constant factor of 1/4 from the optimal. Experimental results on the real dataset show that our LP-based approaches outperform the LP-agnostic heuristics in terms of robustness and effectiveness.
UR - http://www.scopus.com/inward/record.url?scp=85097331939&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097331939&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85097331939
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 4206
EP - 4212
BT - Proceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
A2 - Bessiere, Christian
PB - International Joint Conferences on Artificial Intelligence
T2 - 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Y2 - 1 January 2021
ER -