Abstract
Exploiting the functionalization chemistry of graphene, long-range electrostatic and short-range covalent interactions were harnessed to produce multifunctional energetic materials through hierarchical self-assembly of nanoscale oxidizer and fuel into highly reactive macrostructures. Specifically, we report a methodology for directing the self-assembly of Al and Bi 2O3 nanoparticles on functionalized graphene sheets (FGS) leading to the formation of nanocomposite structures in a colloidal suspension phase that ultimately condense into ultradense macrostructures. The mechanisms driving self-assembly were studied using a host of characterization techniques including zeta potential measurements, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), particle size analysis, micro-Raman spectroscopy, and electron microscopy. A remarkable enhancement in energy release from 739 ± 18 to 1421 ± 12 J/g was experimentally measured for the FGS self-assembled nanocomposites.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 6556-6564 |
| Number of pages | 9 |
| Journal | Langmuir |
| Volume | 30 |
| Issue number | 22 |
| DOIs | |
| State | Published - Jun 10 2014 |
| Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry