A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

In this paper, we present a novel approach to model the fluid/solid interaction forces in a direct solver of the Navier-Stokes equations based on the volume of fluid interface tracking method. The key ingredient of the model is the explicit inclusion of the fluid/solid interaction forces into the governing equations. We show that the interaction forces lead to a partial wetting condition and in particular to a natural definition of the equilibrium contact angle. We present two numerical methods to discretize the interaction forces that enter the model; these two approaches differ in complexity and convergence. To validate the computational framework, we consider the application of these models to simulate two-dimensional drops at equilibrium, as well as drop spreading. We demonstrate that the model, by including the underlying physics, captures contact line dynamics for arbitrary contact angles. More generally, the approach permits novel means to study contact lines, as well as a diverse range of phenomena that previously could not be addressed in direct simulations.

Original languageEnglish (US)
Pages (from-to)243-257
Number of pages15
JournalJournal of Computational Physics
Volume294
DOIs
StatePublished - Aug 1 2015

All Science Journal Classification (ASJC) codes

  • Numerical Analysis
  • Modeling and Simulation
  • Physics and Astronomy (miscellaneous)
  • General Physics and Astronomy
  • Computer Science Applications
  • Computational Mathematics
  • Applied Mathematics

Keywords

  • Contact angle
  • Solid-liquid intermolecular
  • Thin films
  • Volume of fluid method

Fingerprint

Dive into the research topics of 'A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries'. Together they form a unique fingerprint.

Cite this