Abstract
Federated learning (FL) was originally regarded as a framework for collaborative learning among clients with data privacy protection through a coordinating server. In this paper, we propose a new active membership inference (AMI) attack carried out by a dishonest server in FL. In AMI attacks, the server crafts and embeds malicious parameters into global models to effectively infer whether a target data sample is included in a client's private training data or not. By exploiting the correlation among data features through a non-linear decision boundary, AMI attacks with a certified guarantee of success can achieve severely high success rates under rigorous local differential privacy (LDP) protection; thereby exposing clients' training data to significant privacy risk. Theoretical and experimental results on several benchmark datasets show that adding sufficient privacy-preserving noise to prevent our attack would significantly damage FL's model utility.
Original language | English (US) |
---|---|
Pages (from-to) | 5714-5730 |
Number of pages | 17 |
Journal | Proceedings of Machine Learning Research |
Volume | 206 |
State | Published - 2023 |
Event | 26th International Conference on Artificial Intelligence and Statistics, AISTATS 2023 - Valencia, Spain Duration: Apr 25 2023 → Apr 27 2023 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability