TY - GEN
T1 - Adaptive robust control of linear motor systems with dynamic friction compensation using modified LuGre model
AU - Lu, Lu
AU - Yao, Bin
AU - Wang, Qingfeng
AU - Chen, Zheng
PY - 2008
Y1 - 2008
N2 - LuGre model has been widely used in dynamic friction modeling and compensation. However, there are some practical difficulties when applying it to systems experiencing large range of motion speeds such as the linear motor drive system studied in the paper. This paper first details the digital implementation problems of the LuGre model based dynamic friction compensation. A modified model is then presented to overcome those shortcomings. The proposed model is equivalent to LuGre model at low speed, and the static friction model at high speed, with a smooth transition between them. A discontinuous projection based adaptive robust controller (ARC) is then constructed, which explicitly incorporates the proposed modified dynamic friction model for a better friction compensation. Nonlinear observers are built to estimate the unmeasurable internal state of the dynamic friction model. Online parameter adaptation is utilized to reduce the effect of various parametric uncertainties while certain robust control laws are synthesized to effectively handle various modeling uncertainties for a guaranteed robust performance. The proposed controller is also implemented on an industrial linear motor driven gantry system, along with controllers with the traditional static friction compensation and LuGre model compensation. Extensive comparative experimental results have been obtained, revealing the instability when using the traditional LuGre model for dynamic friction compensation at high speed experiments and the improved tracking accuracy when using the proposed modified dynamic friction model. The results validate the effectiveness of the proposed approach in practical applications.
AB - LuGre model has been widely used in dynamic friction modeling and compensation. However, there are some practical difficulties when applying it to systems experiencing large range of motion speeds such as the linear motor drive system studied in the paper. This paper first details the digital implementation problems of the LuGre model based dynamic friction compensation. A modified model is then presented to overcome those shortcomings. The proposed model is equivalent to LuGre model at low speed, and the static friction model at high speed, with a smooth transition between them. A discontinuous projection based adaptive robust controller (ARC) is then constructed, which explicitly incorporates the proposed modified dynamic friction model for a better friction compensation. Nonlinear observers are built to estimate the unmeasurable internal state of the dynamic friction model. Online parameter adaptation is utilized to reduce the effect of various parametric uncertainties while certain robust control laws are synthesized to effectively handle various modeling uncertainties for a guaranteed robust performance. The proposed controller is also implemented on an industrial linear motor driven gantry system, along with controllers with the traditional static friction compensation and LuGre model compensation. Extensive comparative experimental results have been obtained, revealing the instability when using the traditional LuGre model for dynamic friction compensation at high speed experiments and the improved tracking accuracy when using the proposed modified dynamic friction model. The results validate the effectiveness of the proposed approach in practical applications.
KW - Adaptive robust control
KW - Dynamic friction
KW - Linear motor
KW - LuGre model
KW - Motion control
UR - http://www.scopus.com/inward/record.url?scp=52449113397&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=52449113397&partnerID=8YFLogxK
U2 - 10.1109/AIM.2008.4601791
DO - 10.1109/AIM.2008.4601791
M3 - Conference contribution
AN - SCOPUS:52449113397
SN - 9781424424955
T3 - IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
SP - 961
EP - 966
BT - Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2008
T2 - 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2008
Y2 - 2 August 2008 through 5 August 2008
ER -