Additional hemodynamic measurements with an esophageal Doppler monitor: A preliminary report of compliance, force, kinetic energy, and afterload in the clinical setting

Glen Atlas, David Brealey, Sunil Dhar, Gerhard Dikta, Meryvn Singer

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The esophageal Doppler monitor (EDM) is a minimally-invasive hemodynamic device which evaluates both cardiac output (CO), and fluid status, by estimating stroke volume (SV) and calculating heart rate (HR). The measurement of these parameters is based upon a continuous and accurate approximation of distal thoracic aortic blood flow. Furthermore, the peak velocity (PV) and mean acceleration (MA), of aortic blood flow at this anatomic location, are also determined by the EDM. The purpose of this preliminary report is to examine additional clinical hemodynamic calculations of: compliance (C), kinetic energy (KE), force (F), and afterload (TSVRi). These data were derived using both velocity-based measurements, provided by the EDM, as well as other contemporaneous physiologic parameters. Data were obtained from anesthetized patients undergoing surgery or who were in a critical care unit. A graphical inspection of these measurements is presented and discussed with respect to each patient's clinical situation. When normalized to each of their initial values, F and KE both consistently demonstrated more discriminative power than either PV or MA. The EDM offers additional applications for hemodynamic monitoring. Further research regarding the accuracy, utility, and limitations of these parameters is therefore indicated.

Original languageEnglish (US)
Pages (from-to)473-482
Number of pages10
JournalJournal of Clinical Monitoring and Computing
Volume26
Issue number6
DOIs
StatePublished - Dec 1 2012

All Science Journal Classification (ASJC) codes

  • Health Informatics
  • Critical Care and Intensive Care Medicine
  • Anesthesiology and Pain Medicine

Keywords

  • Acceleration
  • Afterload
  • Compliance
  • Contractility
  • Esophageal Doppler monitor
  • Force
  • Kinetic energy
  • Velocity
  • Volume status

Fingerprint

Dive into the research topics of 'Additional hemodynamic measurements with an esophageal Doppler monitor: A preliminary report of compliance, force, kinetic energy, and afterload in the clinical setting'. Together they form a unique fingerprint.

Cite this