Abstract
The Derjaguin-Broekhoff-de Boer theory of capillary condensation is employed to describe deformation of mesoporous solids in the course of adsorption-desorption hysteretic cycles. We suggest a thermodynamic model, which relates the mechanical stress induced by the adsorbed phase to the adsorption isotherm. Analytical expressions are derived for the dependence of the solvation pressure on the vapor pressure. The proposed method provides a description of nonmonotonic hysteretic deformation during capillary condensation without invoking any adjustable parameters. The method is showcased drawing on the examples of literature experimental data on adsorption deformation of porous glass and SBA-15 silica.
Original language | English (US) |
---|---|
Pages (from-to) | 13021-13027 |
Number of pages | 7 |
Journal | Langmuir |
Volume | 26 |
Issue number | 16 |
DOIs | |
State | Published - Aug 17 2010 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry