Adsorption of MS2 on oxide nanoparticles affects chlorine disinfection and solar inactivation

Wen Zhang, Xuezhi Zhang

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Adsorption on colloidal particles is one of the environmental processes affecting fate, transport, viability or reproducibility of viruses. This work studied colloidal interactions (adsorption kinetics and isotherms) between different oxide nanoparticles (NPs) (i.e., TiO2, NiO, ZnO, SiO2, and Al2O3) and bacteriophage, MS2. The results shows that that all oxide NPs exhibited strong adsorption capacity for MS2, except SiO2 NPs, which is supported by the extended Derjaguin and Landau, Verwey and Overbeek (EDLVO) theory. Moreover, the implication of such colloidal interactions on water disinfection is manifested by the observations that the presence of TiO2 and ZnO NPs could enhance MS2 inactivation under solar irradiation, whereas NiO and SiO2 decreased MS2 inactivation. By contrast, all of these oxide NPs were found to mitigate chlorine disinfection against MS2 to different extent, and the shielding effect was probably caused by reduced free chlorine and free MS2 in the solution due to sorption onto NPs. Clearly, there is a pressing need to further understand colloidal interactions between engineered NPs and viruses in water to better improve the current water treatment processes and to develop novel nanomaterials for water disinfection.

Original languageEnglish (US)
Pages (from-to)59-67
Number of pages9
JournalWater Research
Volume69
DOIs
StatePublished - Feb 1 2015

All Science Journal Classification (ASJC) codes

  • Water Science and Technology
  • Ecological Modeling
  • Pollution
  • Waste Management and Disposal
  • Environmental Engineering
  • Civil and Structural Engineering

Keywords

  • Bacteriophage
  • Disinfection
  • Inactivation
  • Metal oxides
  • Nanoparticles

Fingerprint

Dive into the research topics of 'Adsorption of MS2 on oxide nanoparticles affects chlorine disinfection and solar inactivation'. Together they form a unique fingerprint.

Cite this