AirNet: A calibration model for low-cost air monitoring sensors using dual sequence encoder networks

Haomin Yu, Qingyong Li, Yangli Ao Geng, Yingjun Zhang, Zhi Wei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

Air pollution monitoring has attracted much attention in recent years. However, accurate and high-resolution monitoring of atmospheric pollution remains challenging. There are two types of devices for air pollution monitoring, i.e., static stations and mobile stations. Static stations can provide accurate pollution measurements but their spatial distribution is sparse because of their high expense. In contrast, mobile stations offer an effective solution for dense placement by utilizing low-cost air monitoring sensors, whereas their measurements are less accurate. In this work, we propose a data-driven model based on deep neural networks, referred to as AirNet, for calibrating low-cost air monitoring sensors. Unlike traditional methods, which treat the calibration task as a point-to-point regression problem, we model it as a sequence-to-point mapping problem by introducing historical data sequences from both a mobile station (to be calibrated) and the referred static station. Specifically, AirNet first extracts an observation trend feature of the mobile station and a reference trend feature of the static station via dual encoder neural networks. Then, a social-based guidance mechanism is designed to select periodic and adjacent features. Finally, the features are fused and fed into a decoder to obtain a calibrated measurement. We evaluate the proposed method on two real-world datasets and compare it with six baselines. The experimental results demonstrate that our method yields the best performance.

Original languageEnglish (US)
Title of host publicationAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PublisherAAAI press
Pages1129-1136
Number of pages8
ISBN (Electronic)9781577358350
StatePublished - 2020
Event34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States
Duration: Feb 7 2020Feb 12 2020

Publication series

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence

Conference

Conference34th AAAI Conference on Artificial Intelligence, AAAI 2020
Country/TerritoryUnited States
CityNew York
Period2/7/202/12/20

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'AirNet: A calibration model for low-cost air monitoring sensors using dual sequence encoder networks'. Together they form a unique fingerprint.

Cite this