Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries

Xin Bing Cheng, Jia Qi Huang, Qiang Zhang, Hong Jie Peng, Meng Qiang Zhao, Fei Wei

Research output: Contribution to journalArticlepeer-review

371 Scopus citations

Abstract

The use of conductive carbon scaffolds is efficient and effective to obtain advanced composite cathodes for lithium-sulfur batteries. However, the loading amount of mostly less than 70 wt% induces a limited energy density and the typical fabrication route involving high-temperature and elaborate process also limits the manufacturability of sulfur cathode, both of which hinder the practical application of lithium-sulfur batteries. Herein, a scalable, room-temperature, and one-step method is employed for carbon nanotube (CNT)/sulfur composite cathode, in which aligned CNTs served as interconnected conductive scaffolds to accommodate sulfur. When the loading amount of sulfur increased from 50 to 90wt%, the tap density of CNT/sulfur increased from 0.4 to 1.98gcm-3, and the mass/areal/volumetric capacities of the whole electrodes (CNT/sulfur composites and binders) was improved from 500.3mAhg-1/0.298 mAhcm-2/200.1mAhcm-3 to 563.7mAhg-1/0.893 mAhcm-2/1116.0mAhcm-3, respectively. The rise of sulfur content in the composite cathode renders a dramatic increase of the energy density of lithium-sulfur cells. The ultra-high loading amount of sulfur is attributed to the open, ordered, straight pore structure of aligned CNT scaffolds for the uniform distribution of fine sulfur particles. The robust sp2 carbon frameworks served as rapid pathways for electron transfer, and the large aspect ratio, good alignment, ordered packing of individual CNT in small bundles offer a low conductive percolation threshold. Consequently, the sulfur with a high loading content was efficiently utilized for a lithium-sulfur cell with a much improved energy density.

Original languageEnglish (US)
Pages (from-to)65-72
Number of pages8
JournalNano Energy
Volume4
DOIs
StatePublished - Mar 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science
  • Electrical and Electronic Engineering

Keywords

  • Aligned carbon nanotube
  • Cathode
  • Composite
  • Energy storage
  • Lithium sulfur battery

Fingerprint

Dive into the research topics of 'Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries'. Together they form a unique fingerprint.

Cite this