Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3

Edgardo T. Farinas, Miguel Alcalde, Frances Arnold

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

We recently reported conversion of cytochrome P450 BM-3, a medium-chain (C12-C18) fatty acid monooxygenase, into a highly efficient alkane hydroxylase by directed evolution [Nat. Biotechnol. 2002, 20, 1135]. P450 BM-3 mutant 139-3 exhibited high activity towards a variety of fatty acid and alkane substrates, including C3-C8 alkanes. We report here that mutant 139-3 is also active on benzene, styrene, cyclohexene, 1-hexene, and propylene. Benzene is converted to phenol, while styrene is converted to styrene oxide. Propylene oxidation generates only propylene oxide, but cyclohexene oxidation produces a mixture of cyclohexene oxide (85%) and 2-cyclohexene-1-ol (15%), and 1-hexene is converted to the allylic hydroxylation product, 1-hexene-3-ol. Initial rates of NADPH oxidation for 139-3 in the presence of the substrates greatly (17- to >100-fold) surpass the wild-type in all cases. However, NADPH consumption is only partially coupled to product formation (14-79%). This cytochrome P450 epoxidation catalyst is a suitable starting point for further evolution to improve coupling and activity.

Original languageEnglish (US)
Pages (from-to)525-528
Number of pages4
JournalTetrahedron
Volume60
Issue number3
DOIs
StatePublished - Jan 12 2004
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Drug Discovery
  • Organic Chemistry

Keywords

  • Biocatatysis
  • Cytochrome P450
  • Directed evolution
  • Epoxidation
  • Monooxygenase

Fingerprint Dive into the research topics of 'Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3'. Together they form a unique fingerprint.

Cite this