All Models Are Useful: Bayesian Ensembling for Robust High Resolution COVID-19 Forecasting

Aniruddha Adiga, Lijing Wang, Benjamin Hurt, Akhil Peddireddy, Przemyslaw Porebski, Srinivasan Venkatramanan, Bryan Leroy Lewis, Madhav Marathe

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Scopus citations

Abstract

Timely, high-resolution forecasts of infectious disease incidence are useful for policy makers in deciding intervention measures and estimating healthcare resource burden. In this paper, we consider the task of forecasting COVID-19 confirmed cases at the county level for the United States. Although multiple methods have been explored for this task, their performance has varied across space and time due to noisy data and the inherent dynamic nature of the pandemic. We present a forecasting pipeline which incorporates probabilistic forecasts from multiple statistical, machine learning and mechanistic methods through a Bayesian ensembling scheme, and has been operational for nearly 6 months serving local, state and federal policymakers in the United States. While showing that the Bayesian ensemble is at least as good as the individual methods, we also show that each individual method contributes significantly for different spatial regions and time points. We compare our model's performance with other similar models being integrated into CDC-initiated COVID-19 Forecast Hub, and show better performance at longer forecast horizons. Finally, we also describe how such forecasts are used to increase lead time for training mechanistic scenario projections. Our work demonstrates that such a real-time high resolution forecasting pipeline can be developed by integrating multiple methods within a performance-based ensemble to support pandemic response.

Original languageEnglish (US)
Title of host publicationKDD 2021 - Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages2505-2513
Number of pages9
ISBN (Electronic)9781450383325
DOIs
StatePublished - Aug 14 2021
Externally publishedYes
Event27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021 - Virtual, Online, Singapore
Duration: Aug 14 2021Aug 18 2021

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021
Country/TerritorySingapore
CityVirtual, Online
Period8/14/218/18/21

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Keywords

  • Bayesian model averaging
  • COVID-19
  • disease forecasting
  • ensemble

Fingerprint

Dive into the research topics of 'All Models Are Useful: Bayesian Ensembling for Robust High Resolution COVID-19 Forecasting'. Together they form a unique fingerprint.

Cite this