Alterations in Cortical Activity due to Robotic Gait Training in Traumatic Brain Injury

Kiran K. Karunakaran, Danielle M. Nisenson, Karen J. Nolan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Traumatic brain injury (TBI), is one of the leading causes of motor deficits in children and adults, affecting motor control, coordination, and acuity. This results in reduced functional ambulation and quality of life. Robotic exoskeletons (REs) are quickly becoming an effective method for gait neurorehabilitation in individuals with TBI. Neurorehabilitation is based on the principle that the human brain is capable of reorganization due to high dose motor training. Understanding the underlying mechanisms of cortical reorganization will help improve current rehabilitation. The objective of the study is to understand the cortical activity differences due to RE training and recovery of functional ambulation for individuals with chronic TBI, using functional near-infrared spectroscopy. There was an increase in cortical activation in the prefrontal cortex (PFC), bilateral premotor cortex (PMC) and motor cortex (M1) while walking with RE versus without RE at follow-up. Furthermore, decreased activation was observed in PFC, bilateral PMC and M1 from baseline to follow-up while walking without RE with a corresponding improvement in functional ambulation. These preliminary results for one participant provide initial evidence to understand the cortical mechanisms during RE gait training and the recovery induced due to the training.

Original languageEnglish (US)
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3224-3227
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Externally publishedYes
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period7/20/207/24/20

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Alterations in Cortical Activity due to Robotic Gait Training in Traumatic Brain Injury'. Together they form a unique fingerprint.

Cite this