Abstract
In this paper, we analyze the BEM-FEM non-overlapping domain decomposition method introduced in Boubendir [Techniques de Décomposition de Domaine et Méthode d'Equations Intégrales, Ph.D. Thesis, INSA, Toulouse, France, 2002] and improved in Boubendir et al. [A coupling BEM-FEM method using a FETI-LIKE domain decomposition method, in: Proceedings of Waves 2005, Providence, RI, 2005, pp. 188-190] and Bendali et al. [A FETI-like domain decomposition method for coupling FEM and BEM in large-size problems of acoustic scattering, to appear.] The transmission conditions used in this method introduce a quantity that prevents the approach of Després [Méthodes de décomposition de domaine pour les problèmes de propagation d'ondes en régime harmonique, Le théorème de Borg pour l'équation de Hill vectorielle, Ph.D. Thesis, Paris VI University, France, 1991] to establish convergence to be adapted. However, we show that convergence can be established when the geometry allows for a decomposition of the solution into propagating and evanescent portions with a methodology based on modal analysis. Here, we exemplify this in the case of circular cylindrical geometries where the derivations can be based on properties of Bessel functions.
Original language | English (US) |
---|---|
Pages (from-to) | 282-291 |
Number of pages | 10 |
Journal | Journal of Computational and Applied Mathematics |
Volume | 204 |
Issue number | 2 SPEC. ISS. |
DOIs | |
State | Published - Jul 15 2007 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Computational Mathematics
- Applied Mathematics
Keywords
- Bessel functions
- Coupling BEM-FEM
- Domain decomposition method
- Helmholtz equation