Abstract
Hydrogels are crosslinked polymer networks swollen with an aqueous solvent, and play central roles in biomicrofluidic devices. In such applications, the gel is often in contact with a flowing fluid, thus setting up a fluid-hydrogel two-phase system. Using a recently proposed model (Young et al. [41] 2019), we treat the hydrogel as a poroelastic material consisting of a Saint Venant-Kirchhoff polymer network and a Newtonian viscous solvent, and develop a finite-element method for computing flows involving a fluid-hydrogel interface. The interface is tracked by using a fixed-mesh arbitrary Lagrangian-Eulerian method that maps the interface to a reference configuration. The interfacial deformation is coupled with the fluid and solid governing equations into a monolithic algorithm using the finite-element library deal.II. The code is validated against available analytical solutions in several non-trivial flow problems: one-dimensional compression of a gel layer by a uniform flow, two-layer shear flow, and the deformation of a Darcy gel particle in a planar extensional flow. In all cases, the numerical solutions are in excellent agreement with the analytical solutions. Numerical tests show second-order convergence with respect to mesh refinement, and first-order convergence with respect to time-step refinement.
Original language | English (US) |
---|---|
Article number | 110851 |
Journal | Journal of Computational Physics |
Volume | 451 |
DOIs | |
State | Published - Feb 15 2022 |
All Science Journal Classification (ASJC) codes
- Numerical Analysis
- Modeling and Simulation
- Physics and Astronomy (miscellaneous)
- General Physics and Astronomy
- Computer Science Applications
- Computational Mathematics
- Applied Mathematics
Keywords
- Fixed-mesh ALE method
- Fluid-structure interaction
- Hyperelasticity
- Permeability
- Poroelasticity model