Abstract
Group recommendation research has recently received much attention in a recommender system community. Currently, several deep-learning-based methods are used in group recommendation to learn preferences of groups on items and predict the next ones in which groups may be interested. However, their recommendation effectiveness is disappointing. To address this challenge, this article proposes a novel model called a multiattention-based group recommendation model (MAGRM). It well utilizes multiattention-based deep neural network structures to achieve accurate group recommendation. We train its two closely related modules: vector representation for group features and preference learning for groups on items. The former is proposed to learn to accurately represent each group's deep semantic features. It integrates four aspects of subfeatures: group co-occurrence, group description, and external and internal social features. In particular, we employ multiattention networks to learn to capture internal social features for groups. The latter employs a neural attention mechanism to depict preference interactions between each group and its members and then combines group and item features to accurately learn group preferences on items. Through extensive experiments on two real-world databases, we show that MAGRM remarkably outperforms the state-of-The-Art methods in solving a group recommendation problem.
Original language | English (US) |
---|---|
Article number | 8960474 |
Pages (from-to) | 4461-4474 |
Number of pages | 14 |
Journal | IEEE Transactions on Neural Networks and Learning Systems |
Volume | 31 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2020 |
All Science Journal Classification (ASJC) codes
- Software
- Computer Science Applications
- Computer Networks and Communications
- Artificial Intelligence
Keywords
- Attention
- deep learning
- group recommendation
- neural network
- representation learning