An Embarrassingly Simple Approach for Trojan Attack in Deep Neural Networks

Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang, Xia Hu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

134 Scopus citations

Abstract

With the widespread use of deep neural networks (DNNs) in high-stake applications, the security problem of the DNN models has received extensive attention. In this paper, we investigate a specific security problem called trojan attack, which aims to attack deployed DNN systems relying on the hidden trigger patterns inserted by malicious hackers. We propose a training-free attack approach which is different from previous work, in which trojaned behaviors are injected by retraining model on a poisoned dataset. Specifically, we do not change parameters in the original model but insert a tiny trojan module (TrojanNet) into the target model. The infected model with a malicious trojan can misclassify inputs into a target label when the inputs are stamped with the special trigger. The proposed TrojanNet has several nice properties including (1) it activates by tiny trigger patterns and keeps silent for other signals, (2) it is model-agnostic and could be injected into most DNNs, dramatically expanding its attack scenarios, and (3) the training-free mechanism saves massive training efforts comparing to conventional trojan attack methods. The experimental results show that TrojanNet can inject the trojan into all labels simultaneously (all-label trojan attack) and achieves 100% attack success rate without affecting model accuracy on original tasks. Experimental analysis further demonstrates that state-of-the-art trojan detection algorithms fail to detect TrojanNet attack. The code is available at https://github.com/trx14/TrojanNet.

Original languageEnglish (US)
Title of host publicationKDD 2020 - Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages218-228
Number of pages11
ISBN (Electronic)9781450379984
DOIs
StatePublished - Aug 23 2020
Externally publishedYes
Event26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020 - Virtual, Online, United States
Duration: Aug 23 2020Aug 27 2020

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020
Country/TerritoryUnited States
CityVirtual, Online
Period8/23/208/27/20

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Keywords

  • Trojan attack
  • anomaly detection
  • deep learning security

Fingerprint

Dive into the research topics of 'An Embarrassingly Simple Approach for Trojan Attack in Deep Neural Networks'. Together they form a unique fingerprint.

Cite this