TY - GEN
T1 - An enhanced statistical approach to identifying photorealistic images
AU - Sutthiwan, Patchara
AU - Ye, Jingyu
AU - Shi, Yun Q.
PY - 2009
Y1 - 2009
N2 - Computer graphics identification has gained importance in digital era as it relates to image forgery detection and enhancement of high photorealistic rendering software. In this paper, statistical moments of 1-D and 2-D characteristic functions are employed to derive image features that can well capture the statistical differences between computer graphics and photographic images. YCbCr color system is selected because it has shown better performance in computer graphics classification than RGB color system and it has been adopted by the most popularly used JPEG images. Furthermore, only Y and Cb color channels are used in feature extraction due to our study showing features derived from Cb and Cr are so highly correlated that no need to use features extracted from both Cb and Cr components, which substantially reduces computational complexity. Concretely, in each selected color component, features are extracted from each image in both image pixel 2-D array and JPEG 2-D array (an 2-D array consisting of the magnitude of JPEG coefficients), their prediction-error 2-D arrays, and all of their three-level wavelet subbands, referred to as various 2-D arrays generated from a given image in this paper. The rationale behind using prediction-error image is to reduce the influence caused by image content. To generate image features from 1-D characteristic functions, the various 2-D arrays of a given image are the inputs, yielding 156 features in total. For the feature generated from 2-D characteristic functions, only JPEG 2-D array and its prediction-error 2-D array are the inputs, one-unit-apart 2-D histograms of the JPEG 2-D array along the horizontal, vertical and diagonal directions are utilized to generate 2-D characteristic functions, from which the marginal moments are generated to form 234 features. Together, the process then results in 390 features per color channel, and 780 features in total Finally, Boosting Feature Selection (BFS) is used to greatly reduce the dimensionality of features while boosts the machine learning based classification performance to fairly high.
AB - Computer graphics identification has gained importance in digital era as it relates to image forgery detection and enhancement of high photorealistic rendering software. In this paper, statistical moments of 1-D and 2-D characteristic functions are employed to derive image features that can well capture the statistical differences between computer graphics and photographic images. YCbCr color system is selected because it has shown better performance in computer graphics classification than RGB color system and it has been adopted by the most popularly used JPEG images. Furthermore, only Y and Cb color channels are used in feature extraction due to our study showing features derived from Cb and Cr are so highly correlated that no need to use features extracted from both Cb and Cr components, which substantially reduces computational complexity. Concretely, in each selected color component, features are extracted from each image in both image pixel 2-D array and JPEG 2-D array (an 2-D array consisting of the magnitude of JPEG coefficients), their prediction-error 2-D arrays, and all of their three-level wavelet subbands, referred to as various 2-D arrays generated from a given image in this paper. The rationale behind using prediction-error image is to reduce the influence caused by image content. To generate image features from 1-D characteristic functions, the various 2-D arrays of a given image are the inputs, yielding 156 features in total. For the feature generated from 2-D characteristic functions, only JPEG 2-D array and its prediction-error 2-D array are the inputs, one-unit-apart 2-D histograms of the JPEG 2-D array along the horizontal, vertical and diagonal directions are utilized to generate 2-D characteristic functions, from which the marginal moments are generated to form 234 features. Together, the process then results in 390 features per color channel, and 780 features in total Finally, Boosting Feature Selection (BFS) is used to greatly reduce the dimensionality of features while boosts the machine learning based classification performance to fairly high.
KW - Boosting
KW - Computer graphics classification
KW - Moments of characteristic functions
UR - http://www.scopus.com/inward/record.url?scp=70350542509&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350542509&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-03688-0_28
DO - 10.1007/978-3-642-03688-0_28
M3 - Conference contribution
AN - SCOPUS:70350542509
SN - 3642036872
SN - 9783642036873
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 323
EP - 335
BT - Digital Watermarking - 8th International Workshop, IWDW 2009, Proceedings
T2 - 8th International Workshop on Digital Watermarking, IWDW 2009
Y2 - 24 August 2009 through 26 August 2009
ER -