An Omnibus Test for Differential Distribution Analysis of Continuous Microbiome Data

Xiang Lin, Jie Zhang, Zhi Wei, Turki Turki

Research output: Contribution to journalArticlepeer-review

Abstract

The human microbiome is comprised of thousands of microbial species. These species will substantially influence the normal physiology of humans and cause numerous diseases. Microbiome data can be measured by sequencing, microarray, or other technologies. With the fast development of these technologies, downstream analysis methods should also be designed to effectively and accurately discover the valuable information that is hidden in the data. Many methods have been designed for the count data of microbiome. However, to our knowledge, there are only a few methods developed for the continuous microbiome data. Many microbiome data have an over-dispersed and zero-inflated data structure. Traditional methods rarely characterize this data structure and only focus on the differences in the abundance between different samples. In this study, we introduce a novel method, the zero-inflated gamma (ZIG) omnibus test, to specifically test the continuous and zero-inflated microbiome data. In this test, abundance will be tested along with zero prevalence and dispersion. We compared this method with five other popular methods. We found that ZIG omnibus test has significantly higher power and a similar or lower false-positive rate than the competing methods in the tests of simulated data. It also found more proved microbiomes in the real data with tonsil cancer. So, we conclude that ZIG omnibus test is a robust method across various biological conditions in the differential expression test of microbiome data.

Original languageEnglish (US)
Article number9466845
Pages (from-to)100029-100039
Number of pages11
JournalIEEE Access
Volume9
DOIs
StatePublished - 2021

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Materials Science(all)
  • Engineering(all)

Keywords

  • microarray
  • Microbiome
  • omnibus test
  • statistical modeling
  • zero-inflation

Fingerprint

Dive into the research topics of 'An Omnibus Test for Differential Distribution Analysis of Continuous Microbiome Data'. Together they form a unique fingerprint.

Cite this