TY - JOUR
T1 - Anisotropic Turbulent Flows Observed in Above-the-loop-top Regions during Solar Flares
AU - Xie, Xiaoyan
AU - Shen, Chengcai
AU - Reeves, Katharine K.
AU - Chen, Bin
AU - Li, Xiaocan
AU - Guo, Fan
AU - Yu, Sijie
AU - Wei, Yuqian
AU - Dong, Chuanfei
N1 - Publisher Copyright:
© 2025. The Author(s). Published by the American Astronomical Society.
PY - 2025/5/1
Y1 - 2025/5/1
N2 - Solar flare above-the-loop-top (ALT) regions are vital for understanding solar eruptions and fundamental processes in plasma physics. Recent advances in three-dimensional (3D) magnetohydrodynamic (MHD) simulations have revealed unprecedented details on turbulent flows and MHD instabilities in flare ALT regions. Here, for the first time, we examine the observable anisotropic properties of turbulent flows in ALT by applying a flow-tracking algorithm on narrow-band extreme-ultraviolet images that are observed from the face-on viewing perspective. First, the results quantitatively confirm the previous observation that vertical motions dominate and that the anisotropic flows are widely distributed in the entire ALT region with the contribution from both upflows and downflows. Second, the anisotropy shows height-dependent features, with the most substantial anisotropy appearing at a certain middle height in ALT, which agrees well with the MHD modeling results where turbulent flows are caused by Rayleigh-Taylor-type instabilities in the ALT region. Finally, our finding suggests that supra-arcade downflows (SADs), the most prominently visible dynamical structures in ALT regions, are only one aspect of turbulent flows. Among these turbulent flows, we also report the antisunward-moving underdense flows that might develop due to MHD instabilities, as suggested by previous 3D flare models. Our results indicate that the entire flare fan displays group behavior of turbulent flows where the observational bright spikes and relatively dark SADs exhibit similar anisotropic characteristics.
AB - Solar flare above-the-loop-top (ALT) regions are vital for understanding solar eruptions and fundamental processes in plasma physics. Recent advances in three-dimensional (3D) magnetohydrodynamic (MHD) simulations have revealed unprecedented details on turbulent flows and MHD instabilities in flare ALT regions. Here, for the first time, we examine the observable anisotropic properties of turbulent flows in ALT by applying a flow-tracking algorithm on narrow-band extreme-ultraviolet images that are observed from the face-on viewing perspective. First, the results quantitatively confirm the previous observation that vertical motions dominate and that the anisotropic flows are widely distributed in the entire ALT region with the contribution from both upflows and downflows. Second, the anisotropy shows height-dependent features, with the most substantial anisotropy appearing at a certain middle height in ALT, which agrees well with the MHD modeling results where turbulent flows are caused by Rayleigh-Taylor-type instabilities in the ALT region. Finally, our finding suggests that supra-arcade downflows (SADs), the most prominently visible dynamical structures in ALT regions, are only one aspect of turbulent flows. Among these turbulent flows, we also report the antisunward-moving underdense flows that might develop due to MHD instabilities, as suggested by previous 3D flare models. Our results indicate that the entire flare fan displays group behavior of turbulent flows where the observational bright spikes and relatively dark SADs exhibit similar anisotropic characteristics.
UR - http://www.scopus.com/inward/record.url?scp=105003597660&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105003597660&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/adc91b
DO - 10.3847/2041-8213/adc91b
M3 - Article
AN - SCOPUS:105003597660
SN - 2041-8205
VL - 984
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 1
M1 - L27
ER -