TY - JOUR
T1 - Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells
AU - Xiao, Yan
AU - Gao, Xiugong
AU - Taratula, Oleh
AU - Treado, Stephen
AU - Urbas, Aaron
AU - Holbrook, R. David
AU - Cavicchi, Richard E.
AU - Avedisian, C. Thomas
AU - Mitra, Somenath
AU - Savla, Ronak
AU - Wagner, Paul D.
AU - Srivastava, Sudhir
AU - He, Huixin
N1 - Funding Information:
We thank Joseph Hodges and Kristen Steffens of NIST for their help with the laser radiation apparatus. This work was supported by NCI-Early Detection Research Network joint NIST-Biochemical Science Division Interagency Agreement #Y1 CN5001 and in part by National Science Foundation (NSF) Grant #CHE-0750201. The contribution of CTA was supported partly by the New York State Office of Science, Technology, and Academic Research. Certain commercial equipment or materials are identified in this paper in order to specify adequately the experimental procedures. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
PY - 2009/10/2
Y1 - 2009/10/2
N2 - Background: Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs) exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR) absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. Methods: The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1) staining. Results: Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. Conclusion: We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs combined with high specificity and sensitivity of IgY antibodies can lead to new strategies for cancer detection and therapy.
AB - Background: Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs) exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR) absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. Methods: The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1) staining. Results: Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. Conclusion: We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs combined with high specificity and sensitivity of IgY antibodies can lead to new strategies for cancer detection and therapy.
UR - http://www.scopus.com/inward/record.url?scp=70449512642&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70449512642&partnerID=8YFLogxK
U2 - 10.1186/1471-2407-9-351
DO - 10.1186/1471-2407-9-351
M3 - Article
C2 - 19799784
AN - SCOPUS:70449512642
SN - 1471-2407
VL - 9
SP - 351
JO - BMC Cancer
JF - BMC Cancer
M1 - 351
ER -