Applications of Bacillus subtilis Protein Display for Medicine, Catalysis, Environmental Remediation, and Protein Engineering

Asieh Mahmoodi, Edgardo T. Farinas

Research output: Contribution to journalReview articlepeer-review

Abstract

Bacillus subtilis spores offer several advantages that make them attractive for protein display. For example, protein folding issues associated with unfolded polypeptide chains crossing membranes are circumvented. In addition, they can withstand physical and chemical extremes such as heat, desiccation, radiation, ultraviolet light, and oxidizing agents. As a result, the sequence of the displayed protein can be easily obtained even under harsh screening conditions. Next, immobilized proteins have many economic and technological advantages. They can be easily separated from the reaction and the protein stability is increased in harsh environments. In traditional immobilization methods, proteins are expressed and purified and then they are attached to a matrix. In contrast, immobilization occurs naturally during the sporulation process. They can be easily separated from the reaction and the protein stability is increased in harsh environments. Spores are also amenable to high-throughput screening for protein engineering and optimization. Furthermore, they can be used in a wide array of biotechnological and industrial applications such as vaccines, bioabsorbants to remove toxic chemicals, whole-cell catalysts, bioremediation, and biosensors. Lastly, spores are easily produced in large quantities, have a good safety record, and can be used as additives in foods and drugs.

Original languageEnglish (US)
Article number97
JournalMicroorganisms
Volume12
Issue number1
DOIs
StatePublished - Jan 2024

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Microbiology (medical)
  • Virology

Keywords

  • Bacillus subtilis spore
  • enzyme activity
  • protein display
  • protein stability

Fingerprint

Dive into the research topics of 'Applications of Bacillus subtilis Protein Display for Medicine, Catalysis, Environmental Remediation, and Protein Engineering'. Together they form a unique fingerprint.

Cite this