Approximating Connected Maximum Cuts via Local Search

Baruch Schieber, Soroush Vahidi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The Connected Max Cut (CMC) problem takes in an undirected graph G(V, E) and finds a subset S ⊆ V such that the induced subgraph G[S] is connected and the number of edges connecting vertices in S to vertices in V \ S is maximized. This problem is closely related to the Max Leaf Degree (MLD) problem. The input to the MLD problem is an undirected graph G(V, E) and the goal is to find a subtree of G that maximizes the degree (in G) of its leaves. [Gandhi et al. 2018] observed that an α-approximation for the MLD problem induces an O(α)-approximation for the CMC problem. We present an O(log log |V |)-approximation algorithm for the MLD problem via local search. This implies an O(log log |V |)-approximation algorithm for the CMC problem. Thus, improving (exponentially) the best known O(log |V |) approximation of the Connected Max Cut problem [Hajiaghayi et al. 2015].

Original languageEnglish (US)
Title of host publication31st Annual European Symposium on Algorithms, ESA 2023
EditorsInge Li Gortz, Martin Farach-Colton, Simon J. Puglisi, Grzegorz Herman
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959772952
DOIs
StatePublished - Sep 2023
Externally publishedYes
Event31st Annual European Symposium on Algorithms, ESA 2023 - Amsterdam, Netherlands
Duration: Sep 4 2023Sep 6 2023

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume274
ISSN (Print)1868-8969

Conference

Conference31st Annual European Symposium on Algorithms, ESA 2023
Country/TerritoryNetherlands
CityAmsterdam
Period9/4/239/6/23

All Science Journal Classification (ASJC) codes

  • Software

Keywords

  • approximation algorithms
  • graph theory
  • local search
  • max-cut

Fingerprint

Dive into the research topics of 'Approximating Connected Maximum Cuts via Local Search'. Together they form a unique fingerprint.

Cite this