@inproceedings{dc5db6410de94bca90c33017be90298c,
title = "Approximating personalized katz centrality in dynamic graphs",
abstract = "Dynamic graphs can capture changing relationships in many real datasets that evolve over time. One of the most basic questions about networks is the identification of the “most important” vertices in a network. Measures of vertex importance called centrality measures are used to rank vertices in a graph. In this work, we focus on Katz Centrality. Typically, scores are calculated through linear algebra but in this paper we present an new alternative, agglomerative method of calculating Katz scores and extend it for dynamic graphs. We show that our static algorithm is several orders of magnitude faster than the typical linear algebra approach while maintaining good quality of the scores. Furthermore, our dynamic graph algorithm is faster than pure static recomputation every time the graph changes and maintains high recall of the highly ranked vertices on both synthetic and real graphs.",
keywords = "Approximate centrality, Dynamic graphs, Katz centrality, Personalized centrality",
author = "Eisha Nathan and Bader, {David A.}",
note = "Publisher Copyright: {\textcopyright} Springer International Publishing AG, part of Springer Nature 2018.; 12th International Conference on Parallel Processing and Applied Mathematics, PPAM 2017 ; Conference date: 10-09-2017 Through 13-09-2017",
year = "2018",
doi = "10.1007/978-3-319-78024-5_26",
language = "English (US)",
isbn = "9783319780238",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "290--302",
editor = "Jack Dongarra and Roman Wyrzykowski and Konrad Karczewski and Ewa Deelman",
booktitle = "Parallel Processing and Applied Mathematics - 12th International Conference, PPAM 2017, Revised Selected Papers",
address = "Germany",
}