Approximating the surface impedance of a homogeneous lossy half-space: An example of "dialable" accuracy

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We present an approximation by exponentials of the time-domain surface impedance of a lossy half space. Gauss-Chebyshev quadrature of order N - 1 is employed to approximate an integral representation of the modified Bessel functions comprising the time-domain impedance kernel. An explicit error estimate is obtained in terms of the physical parameters, the computation time, and the number of quadrature points N. We show our approximation as accurate as other approaches, which do not come with such an error estimate. The conditions under which the error estimate derived herein, also applies to the approximation in [5] are investigated.

Original languageEnglish (US)
Pages (from-to)941-943
Number of pages3
JournalIEEE Transactions on Antennas and Propagation
Volume50
Issue number7
DOIs
StatePublished - Jul 2002

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Keywords

  • Finite-difference time-domain (FDTD) method
  • Surface impedance boundary condition

Fingerprint

Dive into the research topics of 'Approximating the surface impedance of a homogeneous lossy half-space: An example of "dialable" accuracy'. Together they form a unique fingerprint.

Cite this