Arbitrary-order iterative learning control considering H synthesis

Minghui Zheng, Cong Wang, Liting Sun, Masayoshi Tomizuka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Iterative learning control (ILC) is an effective technique to improve the tracking performance of systems through adjusting the feedforward control signal based on the memory data. It is critically important to design the learning filters in the ILC algorithm that assures the robust stability of the convergence of tracking errors from one iteration to next. The design procedure usually involves lots of tuning work especially in highorder ILC. To facilitate this procedure, this paper proposes an approach to design learning filters for an arbitrary-order ILC with guaranteed convergence and ease of tuning. The filter design problem is formulated into an H optimal control problem. This approach is based on an infinite impulse response (IIR) system and conducted directly in iteration-frequency domain. Important characteristics of the proposed approach are explored and demonstrated on a simulated wafer scanning system.

Original languageEnglish (US)
Title of host publicationMechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791850701
DOIs
StatePublished - Jan 1 2016
EventASME 2016 Dynamic Systems and Control Conference, DSCC 2016 - Minneapolis, United States
Duration: Oct 12 2016Oct 14 2016

Publication series

NameASME 2016 Dynamic Systems and Control Conference, DSCC 2016
Volume2

Other

OtherASME 2016 Dynamic Systems and Control Conference, DSCC 2016
CountryUnited States
CityMinneapolis
Period10/12/1610/14/16

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Arbitrary-order iterative learning control considering H<sub>∞</sub> synthesis'. Together they form a unique fingerprint.

Cite this