Asymptotic properties of ground states of scalar field equations with a vanishing parameter

Vitaly Moroz, Cyrill B. Muratov

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

We study the leading order behaviour of positive solutions of the equation -Δ u+εu-2u C |u|p-2u+|u|q-2u 0, xε ℝN where N ≥ 3, q > p > 2 and ε > 0 is a small parameter. We give a complete characterization of all possible asymptotic regimes as a function of p, q and N. The behaviour of solutions depends on whether p is less than, equal to or greater than the critical Sobolev exponent 2* = 2N/N-2 . For p < 2* the solution asymptotically coincides with the solution of the equation in which the last term is absent. For p > 2* the solution asymptotically coincides with the solution of the equation with ε = 0. In the most delicate case p = 2* the asymptotic behaviour of the solutions is given by a particular solution of the critical Emden-Fowler equation, whose choice depends on ε in a nontrivial way.

Original languageEnglish (US)
Pages (from-to)1081-1109
Number of pages29
JournalJournal of the European Mathematical Society
Volume16
Issue number5
DOIs
StatePublished - 2014

All Science Journal Classification (ASJC) codes

  • Mathematics(all)
  • Applied Mathematics

Keywords

  • Asymptotic behaviour
  • Critical Sobolev exponent
  • Critical and supercritical nonlinearity
  • Pohožaev identity
  • Subcritical

Fingerprint

Dive into the research topics of 'Asymptotic properties of ground states of scalar field equations with a vanishing parameter'. Together they form a unique fingerprint.

Cite this