Axis-guided patch based accurate segmentation for pathological vessels using adaptive weight sparse representation

Xin Hu, Deqiong Ding, Zhengzuo Li, Quanxu Ge, Chunmao Jiang, Jing Li, Zhiyuan Zhou, Dianhui Chu

Research output: Contribution to journalArticlepeer-review

Abstract

Background and objective: Over decades of research and development in vessel segmentation, accurate and reliable methods targeting at pathological vessels are few. Addressing this challenge, we try to delineate the vessel boundary accurately with the presence of pathologies. Methods: A novel segmentation framework is presented in this work, a vessel axis tracking algorithm + a patch-based sparse representation. The patch-based algorithm is navigated by the vessel axis tracking algorithm. Within the training process, multi-scale training samples have been used, which has the potential to be both physiologically accurate and computationally effective. The redundant information embedded in the multi-scale training samples is employed to delineate the pathological vessel accurately. To further reduce the computational burden caused by the patch-based sparse representation, a multi-scale dictionary has been generated, and adaptive weights have been assigned to the scale-specific sub-dictionary atoms, for computational efficiency. Results: Our method is evaluated by comparing with two state-of-the-art methods, on synthetic complex-structured datasets and real clinical datasets. The performance of our method is promising over the evaluation, since the overlap ratios of our method are high over all the datasets, around 91%, much better than two state-of-the-art methods.

Original languageEnglish (US)
Article number101817
JournalBiomedical Signal Processing and Control
Volume57
DOIs
StatePublished - Mar 2020

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Health Informatics

Keywords

  • Adaptive weight sparse representation
  • Multi-scale training samples
  • Patch-based vessel segmentation
  • Pathological vessel

Fingerprint Dive into the research topics of 'Axis-guided patch based accurate segmentation for pathological vessels using adaptive weight sparse representation'. Together they form a unique fingerprint.

Cite this