Balancing relevance and diversity in online bipartite matching via submodularity

John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, Pan Xu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

23 Scopus citations

Abstract

In bipartite matching problems, vertices on one side of a bipartite graph are paired with those on the other. In its online variant, one side of the graph is available offline, while the vertices on the other side arrive online. When a vertex arrives, an irrevocable and immediate decision should be made by the algorithm; either match it to an available vertex or drop it. Examples of such problems include matching workers to firms, advertisers to keywords, organs to patients, and so on. Much of the literature focuses on maximizing the total relevance-modeled via total weight-of the matching. However, in many real-world problems, it is also important to consider contributions of diversity: hiring a diverse pool of candidates, displaying a relevant but diverse set of ads, and so on. In this paper, we propose the Online Submodular Bipartite Matching (OSBM) problem, where the goal is to maximize a submodular function f over the set of matched edges. This objective is general enough to capture the notion of both diversity (e.g., a weighted coverage function) and relevance (e.g., the traditional linear function)-as well as many other natural objective functions occurring in practice (e.g., limited total budget in advertising settings). We propose novel algorithms that have provable guarantees and are essentially optimal when restricted to various special cases. We also run experiments on real-world and synthetic datasets to validate our algorithms.

Original languageEnglish (US)
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages1877-1884
Number of pages8
ISBN (Electronic)9781577358091
StatePublished - 2019
Externally publishedYes
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: Jan 27 2019Feb 1 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period1/27/192/1/19

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Balancing relevance and diversity in online bipartite matching via submodularity'. Together they form a unique fingerprint.

Cite this