Bifurcations of Coupled Electron-Phonon Modes in an Antiferromagnet Subjected to a Magnetic Field

K. N. Boldyrev, T. N. Stanislavchuk, A. A. Sirenko, D. Kamenskyi, L. N. Bezmaternykh, M. N. Popova

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

We report on a new effect caused by the electron-phonon coupling in a stoichiometric rare-earth antiferromagnetic crystal subjected to an external magnetic field, namely, the appearance of a nonzero gap in the spectrum of electronic excitations in an arbitrarily small field. The effect was registered in the low-temperature far-infrared (terahertz) reflection spectra of an easy-axis antiferromagnet PrFe3(BO3)4 in magnetic fields Bext-c. Both paramagnetic and magnetically ordered phases (including a spin-flop one) were studied in magnetic fields up to 30 T, and two bifurcation points were observed. We show that the field behavior of the coupled modes can be successfully explained and modeled on the basis of the equation derived in the framework of the theory of coupled electron-phonon modes, with the same field-independent electron-phonon interaction constant |W|=14.8 cm-1.

Original languageEnglish (US)
Article number167203
JournalPhysical Review Letters
Volume118
Issue number16
DOIs
StatePublished - Apr 18 2017

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Bifurcations of Coupled Electron-Phonon Modes in an Antiferromagnet Subjected to a Magnetic Field'. Together they form a unique fingerprint.

Cite this