TY - GEN
T1 - Bit allocation for multiview image compression using cubic synthesized view distortion model
AU - Velisavljević, Vladan
AU - Cheung, Gene
AU - Chakareski, Jacob
PY - 2011
Y1 - 2011
N2 - Texture-plus-depth has become a popular coding format for multiview image compression, where a decoder can synthesize images at intermediate viewpoints using encoded texture and depth maps of closest captured view locations via depth-image-based rendering (DIBR). As in other resource-constrained scenarios, limited available bits must be optimally distributed among captured texture and depth maps to minimize the expected signal distortion at the decoder. A specific challenge of multiview image compression for DIBR is that the encoder must allocate bits without the knowledge of how many and which specific virtual views will be synthesized at the decoder for viewing. In this paper, we derive a cubic synthesized view distortion model to describe the visual quality of an interpolated view as a function of the view's location. Given the model, one can easily find the virtual view location between two coded views where the maximum synthesized distortion occurs. Using a multiview image codec based on shape-adaptive wavelet transform, we show how optimal bit allocation can be performed to minimize the maximum view synthesis distortion at any intermediate viewpoint. Our experimental results show that the optimal bit allocation can outperform a common uniform bit allocation scheme by up to 1.0dB in coding efficiency performance, while simultaneously being competitive to a state-of-the-art H.264 codec.
AB - Texture-plus-depth has become a popular coding format for multiview image compression, where a decoder can synthesize images at intermediate viewpoints using encoded texture and depth maps of closest captured view locations via depth-image-based rendering (DIBR). As in other resource-constrained scenarios, limited available bits must be optimally distributed among captured texture and depth maps to minimize the expected signal distortion at the decoder. A specific challenge of multiview image compression for DIBR is that the encoder must allocate bits without the knowledge of how many and which specific virtual views will be synthesized at the decoder for viewing. In this paper, we derive a cubic synthesized view distortion model to describe the visual quality of an interpolated view as a function of the view's location. Given the model, one can easily find the virtual view location between two coded views where the maximum synthesized distortion occurs. Using a multiview image codec based on shape-adaptive wavelet transform, we show how optimal bit allocation can be performed to minimize the maximum view synthesis distortion at any intermediate viewpoint. Our experimental results show that the optimal bit allocation can outperform a common uniform bit allocation scheme by up to 1.0dB in coding efficiency performance, while simultaneously being competitive to a state-of-the-art H.264 codec.
KW - bit allocation
KW - depth-image-based rendering
KW - distortion modeling
KW - multiview imaging
UR - http://www.scopus.com/inward/record.url?scp=80155127431&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80155127431&partnerID=8YFLogxK
U2 - 10.1109/ICME.2011.6012199
DO - 10.1109/ICME.2011.6012199
M3 - Conference contribution
AN - SCOPUS:80155127431
SN - 9781612843490
T3 - Proceedings - IEEE International Conference on Multimedia and Expo
BT - Electronic Proceedings of the 2011 IEEE International Conference on Multimedia and Expo, ICME 2011
T2 - 2011 12th IEEE International Conference on Multimedia and Expo, ICME 2011
Y2 - 11 July 2011 through 15 July 2011
ER -