Bouncing droplets on a billiard table

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

In a set of experiments, Couder et al. demonstrate that an oscillating fluid bed may propagate a bouncing droplet through the guidance of the surface waves. I present a dynamical systems model, in the form of an iterative map, for a droplet on an oscillating bath. I examine the droplet bifurcation from bouncing to walking, and prescribe general requirements for the surface wave to support stable walking states. I show that in addition to walking, there is a region of large forcing that may support the chaotic motion of the droplet. Using the map, I then investigate the droplet trajectories in a square (billiard ball) domain. I show that in large domains, the long time trajectories are either non-periodic dense curves or approach a quasiperiodic orbit. In contrast, in small domains, at low forcing, trajectories tend to approach an array of circular attracting sets. As the forcing increases, the attracting sets break down and the droplet travels throughout space.

Original languageEnglish (US)
Article number013115
JournalChaos
Volume23
Issue number1
DOIs
StatePublished - Mar 18 2013
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • General Physics and Astronomy
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Bouncing droplets on a billiard table'. Together they form a unique fingerprint.

Cite this