Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance

Research output: Contribution to journalArticlepeer-review

229 Scopus citations

Abstract

This paper presents a novel pattern recognition framework by capitalizing on dimensionality increasing techniques. In particular, the framework integrates Gabor image representation, a novel multiclass Kernel Fisher Analysis (KFA) method, and fractional power polynomial models for improving pattern recognition performance. Gabor image representation, which increases dimensionality by incorporating Gabor filters with different scales and orientations, is characterized by spatial frequency, spatial locality, and orientational selectivity for coping with image variabilities such as illumination variations. The KFA method first performs nonlinear mapping from the input space to a high-dimensional feature space, and then implements the multiclass Fisher discriminant analysis in the feature space. The significance of the nonlinear mapping is that it increases the discriminating power of the KFA method, which is linear in the feature space but nonlinear in the input space. The novelty of the KFA method comes from the fact that 1) it extends the two-class kernel Fisher methods by addressing multiclass pattern classification problems and 2) it improves upon the traditional Generalized Discriminant Analysis (GDA) method by deriving a unique solution (compared to the GDA solution, which is not unique). The fractional power polynomial models further improve performance of the proposed pattern recognition framework. Experiments on face recognition using both the FERET database and the FRGC (Face Recognition Grand Challenge) databases show the feasibility of the proposed framework. In particular, experimental results using the FERET database show that the KFA method performs better than the GDA method and the fractional power polynomial models help both the KFA method and the GDA method improve their face recognition performance. Experimental results using the FRGC databases show that the proposed pattern recognition framework improves face recognition performance upon the BEE baseline algorithm and the LDA-based baseline algorithm by large margins.

Original languageEnglish (US)
Pages (from-to)725-737
Number of pages13
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Volume28
Issue number5
DOIs
StatePublished - May 2006
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition
  • Computational Theory and Mathematics
  • Artificial Intelligence
  • Applied Mathematics

Keywords

  • Dimensionality increasing techniques
  • Face Recognition Grand Challenge (FRGC)
  • Face recognition
  • Fractional power polynomial models
  • Gabor image representation
  • Kernel Fisher Analysis (KFA) method

Fingerprint

Dive into the research topics of 'Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance'. Together they form a unique fingerprint.

Cite this