Carbon Fiber Electrodes for in Vivo Spinal Cord Recordings

Esma Cetinkaya, Sinan Gok, Mesut Sahin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Development of micro electrode arrays for neural recording is an active field that thrives on novel materials and fabrication techniques offered by micro fabrication technology. The material and mechanical properties of microelectrode arrays have a critical role on the quality and longevity of neural signals. In this study, carbon fiber microelectrode (CFME) bundles were developed and implanted in the spinal cord of experimental animals for in vivo recording. Neural data analysis revealed that single spikes could successfully be recorded and sorted. Removal of approximately 75 μ of the parylene-C coating at the tips of the fibers increased the signalto-noise ratio. Connecting multiple (three) carbon fiber filaments to the same recording channel did not deteriorate the signal quality compared to that of undesheathed fibers. Immunohistochemistry showed that electrode tips were splayed in tissue after implantation and CF bundles had a small footprint with mild encapsulation around them. These results are very promising for the use of CFME bundles for recordings of spinal cord signals in behaving animals.

Original languageEnglish (US)
Title of host publication40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5069-5072
Number of pages4
ISBN (Electronic)9781538636466
DOIs
StatePublished - Oct 26 2018
Event40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States
Duration: Jul 18 2018Jul 21 2018

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2018-July
ISSN (Print)1557-170X

Other

Other40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
Country/TerritoryUnited States
CityHonolulu
Period7/18/187/21/18

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Carbon Fiber Electrodes for in Vivo Spinal Cord Recordings'. Together they form a unique fingerprint.

Cite this