TY - GEN
T1 - Cardiocam
T2 - 17th ACM International Conference on Mobile Systems, Applications, and Services, MobiSys 2019
AU - Liu, Jian
AU - Shi, Cong
AU - Chen, Yingying
AU - Liu, Hongbo
AU - Gruteser, Marco
N1 - Publisher Copyright:
© 2019 Association for Computing Machinery.
PY - 2019/6/12
Y1 - 2019/6/12
N2 - With the increasing prevalence of mobile and IoT devices (e.g., smartphones, tablets, smart-home appliances), massive private and sensitive information are stored on these devices. To prevent unauthorized access on these devices, existing user verification solutions either rely on the complexity of user-defined secrets (e.g., password) or resort to specialized biometric sensors (e.g., fingerprint reader), but the users may still suffer from various attacks, such as password theft, shoulder surfing, smudge, and forged biometrics attacks. In this paper, we propose, CardioCam, a low-cost, general, hard-to-forge user verification system leveraging the unique cardiac biometrics extracted from the readily available built-in cameras in mobile and IoT devices. We demonstrate that the unique cardiac features can be extracted from the cardiac motion patterns in fingertips, by pressing on the built-in camera. To mitigate the impacts of various ambient lighting conditions and human movements under practical scenarios, CardioCam develops a gradient-based technique to optimize the camera configuration, and dynamically selects the most sensitive pixels in a camera frame to extract reliable cardiac motion patterns. Furthermore, the morphological characteristic analysis is deployed to derive user-specific cardiac features, and a feature transformation scheme grounded on Principle Component Analysis (PCA) is developed to enhance the robustness of cardiac biometrics for effective user verification. With the prototyped system, extensive experiments involving 25 subjects are conducted to demonstrate that CardioCam can achieve effective and reliable user verification with over 99% average true positive rate (TPR) while maintaining the false positive rate (FPR) as low as 4%.
AB - With the increasing prevalence of mobile and IoT devices (e.g., smartphones, tablets, smart-home appliances), massive private and sensitive information are stored on these devices. To prevent unauthorized access on these devices, existing user verification solutions either rely on the complexity of user-defined secrets (e.g., password) or resort to specialized biometric sensors (e.g., fingerprint reader), but the users may still suffer from various attacks, such as password theft, shoulder surfing, smudge, and forged biometrics attacks. In this paper, we propose, CardioCam, a low-cost, general, hard-to-forge user verification system leveraging the unique cardiac biometrics extracted from the readily available built-in cameras in mobile and IoT devices. We demonstrate that the unique cardiac features can be extracted from the cardiac motion patterns in fingertips, by pressing on the built-in camera. To mitigate the impacts of various ambient lighting conditions and human movements under practical scenarios, CardioCam develops a gradient-based technique to optimize the camera configuration, and dynamically selects the most sensitive pixels in a camera frame to extract reliable cardiac motion patterns. Furthermore, the morphological characteristic analysis is deployed to derive user-specific cardiac features, and a feature transformation scheme grounded on Principle Component Analysis (PCA) is developed to enhance the robustness of cardiac biometrics for effective user verification. With the prototyped system, extensive experiments involving 25 subjects are conducted to demonstrate that CardioCam can achieve effective and reliable user verification with over 99% average true positive rate (TPR) while maintaining the false positive rate (FPR) as low as 4%.
KW - Authentication
KW - Camera
KW - Cardiac biometric
KW - Mobile devices
UR - http://www.scopus.com/inward/record.url?scp=85069217069&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069217069&partnerID=8YFLogxK
U2 - 10.1145/3307334.3326093
DO - 10.1145/3307334.3326093
M3 - Conference contribution
AN - SCOPUS:85069217069
T3 - MobiSys 2019 - Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services
SP - 249
EP - 261
BT - MobiSys 2019 - Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services
PB - Association for Computing Machinery, Inc
Y2 - 17 June 2019 through 21 June 2019
ER -