Cationic surfactant-assisted foam fractionation enhances the removal of short-chain perfluoroalkyl substances from impacted water

Cheng Shiuan Lee, Arjun K. Venkatesan

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Several studies have demonstrated that air-bubbling and foam fractionation techniques can efficiently remove long-chain PFAS from contaminated water. However, removing short-chain PFAS is challenging due to its lower surface activity and inability to form self-assembly structures at the air-water interface. In this study, we tested various additives, including salts, surfactants, and polymers, to improve short-chain PFAS (e.g., perfluorobutanesulfonic acid (PFBS) and perfluorobutanoic acid (PFBA)) removal in non-foaming solutions using a bench-scale system. We found that in the presence of cetyltrimethylammonium chloride (CTAC) and salt, air-bubbling can significantly remove 0.5 μg L−1 of PFBS and PFBA in deionized water by >99% (15 min) and 81% (60 min), respectively. The decline of surface tension and the formation of thin foam-like layers during bubbling, controlled by the concentration of CTAC, significantly improved the removal of short-chain PFAS. Adding anionic and neutral surfactants showed no removal of short-chain PFAS during bubbling, suggesting the importance of the electrostatic interactions between short-chain PFAS and the cationic CTAC. We observed a 1:1 M ratio between CTAC and PFBS removed from the solution, suggesting the formation of ion pairs in the solution and enhancing the surface activity of the overall neutral (PFAS-CTAC) complex. A mass balance of the system revealed that the primary mechanism by which PFAS was removed from non-foaming waters was through aerosol generation (70−100%). Using the optimized condition, PFAS mixtures (short- and long-chain PFAS, including five recently regulated PFAS by USPEA, 2 nM each) in deionized water and natural groundwater were successfully removed to below detection (>99% removal; <2 ng L−1), except for PFBA (25−73% removal). These results provide an improved understanding of the mechanism by which PFAS is removed during foam fractionation and highlight the need for capturing aerosols enriched with PFAS to prevent secondary contamination.

Original languageEnglish (US)
Article number142614
JournalChemosphere
Volume362
DOIs
StatePublished - Aug 2024

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • General Chemistry
  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Keywords

  • Aerosols
  • Bubbling
  • CTAC
  • Foam fractionation
  • Ion pair
  • PFAS

Fingerprint

Dive into the research topics of 'Cationic surfactant-assisted foam fractionation enhances the removal of short-chain perfluoroalkyl substances from impacted water'. Together they form a unique fingerprint.

Cite this