Abstract
There is a growing demand for bone graft substitutes that mimic the extracellular matrix properties of the native bone tissue to enhance stem cell osteogenesis. Composite hydrogels containing human bone allograft particles are particularly interesting due to inherent bioactivity of the allograft tissue. Here, we report a novel photocurable composite hydrogel bioink for bone tissue engineering. Our composite bioink is formulated by incorporating human allograft bone particles in a methacrylated alginate formulation to enhance adult human mesenchymal stem cell (hMSC) osteogenesis. Detailed rheology and printability studies confirm suitability of our composite bioinks for extrusion-based 3D bioprinting technology. In vitro studies reveal high cell viability (~90%) for hMSCs up to 28 days of culture within 3D bioprinted composite scaffolds. When cultured within bioprinted composite scaffolds, hMSCs show significantly enhanced osteogenic differentiation as compared to neat scaffolds based on alkaline phosphatase activity, calcium deposition, and osteocalcin expression.
Original language | English (US) |
---|---|
Article number | 3788 |
Journal | Polymers |
Volume | 14 |
Issue number | 18 |
DOIs | |
State | Published - Sep 2022 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Polymers and Plastics
Keywords
- additive manufacturing
- alginate
- bioprinting
- bone regeneration
- bone scaffold
- bone tissue engineering
- photocurable hydrogel
- rheology