Cell-Laden Composite Hydrogel Bioinks with Human Bone Allograft Particles to Enhance Stem Cell Osteogenesis

Hadis Gharacheh, Murat Guvendiren

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

There is a growing demand for bone graft substitutes that mimic the extracellular matrix properties of the native bone tissue to enhance stem cell osteogenesis. Composite hydrogels containing human bone allograft particles are particularly interesting due to inherent bioactivity of the allograft tissue. Here, we report a novel photocurable composite hydrogel bioink for bone tissue engineering. Our composite bioink is formulated by incorporating human allograft bone particles in a methacrylated alginate formulation to enhance adult human mesenchymal stem cell (hMSC) osteogenesis. Detailed rheology and printability studies confirm suitability of our composite bioinks for extrusion-based 3D bioprinting technology. In vitro studies reveal high cell viability (~90%) for hMSCs up to 28 days of culture within 3D bioprinted composite scaffolds. When cultured within bioprinted composite scaffolds, hMSCs show significantly enhanced osteogenic differentiation as compared to neat scaffolds based on alkaline phosphatase activity, calcium deposition, and osteocalcin expression.

Original languageEnglish (US)
Article number3788
JournalPolymers
Volume14
Issue number18
DOIs
StatePublished - Sep 2022

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Polymers and Plastics

Keywords

  • additive manufacturing
  • alginate
  • bioprinting
  • bone regeneration
  • bone scaffold
  • bone tissue engineering
  • photocurable hydrogel
  • rheology

Fingerprint

Dive into the research topics of 'Cell-Laden Composite Hydrogel Bioinks with Human Bone Allograft Particles to Enhance Stem Cell Osteogenesis'. Together they form a unique fingerprint.

Cite this