@inproceedings{8f96b82963ab4b0e84421e9bf725c7fe,
title = "Challenges in predicting glioma survival time in multi-modal deep networks",
abstract = "Prediction of cancer survival time is of considerable interest in medicine as it leads to better patient care and reduces health care costs. In this study, we propose a multi-path multimodal neural network that predicts Glioblastoma Multiforme (GBM) survival time at the 14 months threshold. We obtained image, gene expression, and SNP variants from whole-exome sequences all from the The Cancer Genome Atlas portal for a total of 126 patients. We perform a 10-fold cross-validation experiment on each of the data sources separately as well as the model with all data combined. From post-contrast Tl MRI data, we used 3D scans and 2D slices that we selected manually to show the tumor region. We find that the model with 2D MRI slices and genomic data combined gives the highest accuracies over individual sources but by a modest margin. We see considerable variation in accuracies across the 10 folds and that our model achieves 100% accuracy on the training data but lags behind in test accuracy. With dropout our training accuracy falls considerably. This shows that predicting glioma survival time is a challenging task but it is unclear if this is also a symptom of insufficient data. A clear direction here is to augment our data that we plan to explore with generative models. Overall we present a novel multi-modal network that incorporates SNP, gene expression, and MRI image data for glioma survival time prediction.",
keywords = "CNN, MRI, SNPs, TCGA GBM, mRNA expression",
author = "Abdulrhman Aljouie and Yunzhe Xue and Meiyan Xie and Usman Roshan",
note = "Publisher Copyright: {\textcopyright} 2020 IEEE.; 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020 ; Conference date: 16-12-2020 Through 19-12-2020",
year = "2020",
month = dec,
day = "16",
doi = "10.1109/BIBM49941.2020.9313512",
language = "English (US)",
series = "Proceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "2558--2562",
editor = "Taesung Park and Young-Rae Cho and Hu, {Xiaohua Tony} and Illhoi Yoo and Woo, {Hyun Goo} and Jianxin Wang and Julio Facelli and Seungyoon Nam and Mingon Kang",
booktitle = "Proceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020",
address = "United States",
}