Characterization of 1,4-dioxane degrading microbial community enriched from uncontaminated soil

Yuyin Tang, Mian Wang, Cheng Shiuan Lee, Arjun K. Venkatesan, Xinwei Mao

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Abstract: 1,4-Dioxane is a contaminant of emerging concern that has been commonly detected in groundwater. In this study, a stable and robust 1,4-dioxane degrading enrichment culture was obtained from uncontaminated soil. The enrichment was capable to metabolically degrade 1,4-dioxane at both high (100 mg L−1) and environmentally relevant concentrations (300 μg L−1), with a maximum specific 1,4-dioxane degradation rate (qmax) of 0.044 ± 0.001 mg dioxane h−1 mg protein−1, and 1,4-dioxane half-velocity constant (Ks) of 25 ± 1.6 mg L−1. The microbial community structure analysis suggested Pseudonocardia species, which utilize the dioxane monooxygenase for metabolic 1,4-dioxane biodegradation, were the main functional species for 1,4-dioxane degradation. The enrichment culture can adapt to both acidic (pH 5.5) and alkaline (pH 8) conditions and can recover degradation from low temperature (10°C) and anoxic (DO < 0.5 mg L−1) conditions. 1,4-Dioxane degradation of the enrichment culture was reversibly inhibited by TCE with concentrations higher than 5 mg L−1 and was completely inhibited by the presence of 1,1-DCE as low as 1 mg L−1. Collectively, these results demonstrated indigenous stable and robust 1,4-dioxane degrading enrichment culture can be obtained from uncontaminated sources and can be a potential candidate for 1,4-dioxane bioaugmentation at environmentally relevant conditions. Key points: •1,4-Dioxane degrading enrichment was obtained from uncontaminated soil. • The enrichment culture could degrade 1,4-dioxane to below 10 μg L−1. •Low Ksand low cell yield of the enrichment benefit its application in bioremediation.

Original languageEnglish (US)
Pages (from-to)955-969
Number of pages15
JournalApplied Microbiology and Biotechnology
Volume107
Issue number2-3
DOIs
StatePublished - Feb 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Applied Microbiology and Biotechnology

Keywords

  • 1,4-Dioxane
  • Co-contaminant inhibition
  • Dioxane monooxygenase
  • Metabolic biodegradation

Fingerprint

Dive into the research topics of 'Characterization of 1,4-dioxane degrading microbial community enriched from uncontaminated soil'. Together they form a unique fingerprint.

Cite this