Characterization of microporous ECTFE membrane after exposure to different liquid media and radiation

Na Yao, John Chau, Ezinwa Elele, Boris Khusid, Kamalesh K. Sirkar, Derek J. Dehn

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


Changes in the properties of microfiltration (MF) membranes exposed to acids, bases and organic solvents used in semiconductor processing are of interest. Microfiltration membranes used for sterilization in beverage, biotechnology and pharmaceutical industries are sterilized by gamma radiation among others. Irradiation-induced degradation in membrane properties should be known. Microporous membranes of ethylene chlorotrifluoroethylene (ECTFE) membranes subjected to caustic soaking, organic solvent soaking and γ-irradiation were characterized extensively and compared with widely-used polyvinylidene fluoride (PVDF) membranes for selected properties. ECTFE membrane swellings by seven solvents including tri-n-octylamine (TOA) were much larger than those of nonporous ECTFE films. Scanning electron microscopy, atomic force microscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) indicated significant defects in TOA-soaked membranes. Thermogravimetric analysis (TGA) and DSC confirmed TOA presence in membrane pores. Solvents THF (tetrahydrofuran), toluene, acetonitrile and TOA decreased Young's modulus by 6–30%. ECTFE membranes resisted plasticization by these solvents: glass transition temperature variations were limited. In TOA-treated membranes, XRD indicated more significant defects in PVDF membranes. Treatment with NaOH solutions showed no effect on contact angle and bubble point pressure (BPP). Only 3 M caustic solution reduced liquid entry pressure by 13.8 kPag. ECTFE membranes showed greater hydrophobicity, stronger wetting resistance and better ability to maintain hydrophobicity vis-à-vis PVDF membranes. ECTFE membranes subjected to γ-radiation (up to 45 kGy) showed almost no effect on morphology, porosity and Young's modulus. Slight variations were observed in BPP, melting enthalpy obtained via DSC and energy loss measured in dielectric relaxation spectroscopy.

Original languageEnglish (US)
Pages (from-to)89-104
Number of pages16
JournalJournal of Membrane Science
StatePublished - 2017

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • General Materials Science
  • Physical and Theoretical Chemistry
  • Filtration and Separation


  • ECTFE membrane
  • Effects of solvent-soaking and gamma irradiation
  • Microfiltration membrane properties
  • PVDF membrane
  • Sterilization and particle removal


Dive into the research topics of 'Characterization of microporous ECTFE membrane after exposure to different liquid media and radiation'. Together they form a unique fingerprint.

Cite this