Abstract
A network of two neurons mutually coupled through inhibitory synapses that display short-term synaptic depression is considered. We show that synaptic depression expands the number of possible activity patterns that the network can display and allows for co-existence of different patterns. Specifically, the network supports different types of n-m anti-phase firing patterns, where one neuron fires n spikes followed by the other neuron firing m spikes. When maximal synaptic conductances are identical, n-n anti-phase firing patterns are obtained and there are conductance intervals over which different pairs of these solutions co-exist. The multitude of n-m anti-phase patterns and their co-existence are not found when the synapses are non-depressing. Geometric singular perturbation methods for dynamical systems are applied to the original eight-dimensional model system to derive a set of one-dimensional conditions for the existence and co-existence of different anti-phase solutions. The generality and validity of these conditions are demonstrated through numerical simulations utilizing the Hodgkin-Huxley and Morris-Lecar neuronal models.
Original language | English (US) |
---|---|
Pages (from-to) | 42-54 |
Number of pages | 13 |
Journal | Journal of Theoretical Biology |
Volume | 272 |
Issue number | 1 |
DOIs | |
State | Published - Mar 7 2011 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Modeling and Simulation
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences
- Applied Mathematics
Keywords
- Dynamical systems
- Periodic orbit
- Synaptic depression